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Abstract
The Kerr spinning particle displays some remarkable relations to the Dirac
electron, and has a reach spinor structure which is based on a twistorial
description of the Kerr congruence determined by the Kerr theorem. We
consider the relation between this spinor-twistorial structure and spinors of
the Dirac equation, and show that the Dirac equation may naturally be
incorporated into Kerr–Schild formalism as a master equation controlling the
twistorial structure of Kerr geometry. As a result, the Dirac electron acquires
an extended spacetime structure having a clear coordinate description with
natural incorporation of a gravitational field. The relation between the Dirac
wave function and Kerr geometry is realized via a chain of links: Dirac wave
function ⇒ Complex Kerr Source ⇒ Kerr Theorem ⇒ Real Kerr geometry.
As a result, the wave function acquires the role of an ‘order parameter’ which
controls spin, dynamics and twistorial polarization of Kerr–Newman spacetime.

PACS numbers: 11.27.+d, 11.25.Mj, 03.65.−w

1. Introduction

The fact that the Kerr–Newman solution has a gyromagnetic ratio g = 2 as that of the
Dirac electron [1] created the treatment of this solution as a classical model of an extended
electron in general relativity [1–14]. If this coincidence is not occasional, one has to answer
a fundamental question: what is the relation of the Dirac equation to the structure of the
Kerr–Newman solution? Contrary to the Dirac electron, the Kerr spinning particle has a clear
spacetime structure which is concordant with the gravitational field.

One can argue that the gravitational field of an electron is negligibly weak and can
be ignored. However, one cannot ignore the extremely large spin/mass ratio (about 1044

in the units h̄ = c = G = 1) which shows that correct estimations of the gravitational
effects have to be based on the Kerr–Newman solution. Results of corresponding analysis
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are rather unexpected [15, 16] and differ drastically from the estimations performed on the
base of spherically symmetric solutions. Although the local averaged gravity is very weak, the
extremely high spin leads to the very strong polarization of spacetime and to the corresponding
very strong deformation of the electromagnetic (em-) field which has to be aligned with the
Kerr congruence. Since the em-field of an electron cannot be considered small, the resulting
influence turns out to be essential. In particular, the em-field turns out to be singular at the
Kerr singular ring which has the Compton size. Moreover, the Kerr–Newman spacetime with
parameters of an electron is topologically not equivalent to the flat Minkowski spacetime,
acquiring two folds with a branch line along the Kerr ring. It shows that the Kerr geometry
gives some new background for the treatment of this problem. In fact, the Kerr solution gives
us some complementary coordinate information which has a natural relation to gravity and
displays independently the special role of the Compton region.

The aim of this paper is to set an exact correspondence between the operators of
polarization and momentum of an electron in the Dirac theory and similar relations for the
momentum and spin of the Kerr spinning particle:

Dirac equation ⇒ wave function ⇒ Kerr Geometry. (1)

As a result, we obtain a model, in which the electron has the extended spacetime structure
of Kerr–Newman geometry and the Dirac equation is considered a master equation controlling
the dynamics and polarization of this structure1.

Our treatment is based on that initiated by Newman [17] complex representation of
the Kerr geometry, in which a ‘point-like’ source of the Kerr–Newman solution is placed
in a complex region and propagates along a complex world-line Xµ(τ) in a complexified
Minkowski spacetime CM4.

It was shown [18, 19] that a natural and rigorous treatment of this construction may only
be achieved in the Kerr–Schild formalism [3] which is based on the metric decomposition
gµν = ηµν − 2Hkµkν containing auxiliary Minkowski spacetime M4 with metric ηµν. This
auxiliary M4 is complexified to CM4 and can be used as a natural spacetime for the complex
Kerr source as well as for the Kerr null vector field kµ(x), x = xµ ∈ M4 forming the Kerr
congruence via the Kerr theorem [18–21].

The Kerr theorem determines the Kerr congruence in M4 from a holomorphic generating
function F(Z) in terms of projective twistor coordinates Zα . The relation of the Kerr geometry
to twistors is not seen in Boyer–Lindquist coordinates, but it turns out to be profound in the
Kerr–Schild formalism. Although the terms ‘twistor’ and ‘Kerr theorem’ were absent in the
seminal paper [3], they were practically used there for the derivation of the Kerr–Schild class
of solutions via the chain of relations

F(Z) ⇒ Y (x) ⇒ kµ ⇒ gµν, (2)

where the twistor coordinates

Zα = (Y, ζ − Yv, u + Y ζ̄ ) (3)

are defined via the null Cartesian coordinates

2
1
2 ζ = x + iy, 2

1
2 ζ̄ = x − iy, 2

1
2 u = z − t, 2

1
2 v = z + t. (4)

The variable Y plays a special role, being the projective spinor coordinate Y = φ2/φ1 and,
simultaneously, the projective angular coordinate

Y = eiφ tan
θ

2
. (5)

1 In fact we arrive at some stochastic version of one-particle quantum theory with hidden structure, similar to theories
with hidden parameters.
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Therefore, the output of the Kerr theorem, function Y (x), determines the field of null directions
kµ(xµ) in M4. This field forms a vortex of twisting null congruence, each geodesic line of
which represents the twistor Zα = const.

To match the Dirac solutions with the Kerr congruence we select two special twistor lines
going via the center of the solution, (t, x, y, z) = (0, 0, 0, 0), and corresponding to Y = 0 and
Y = ∞. For the Kerr solution in a standard position, these lines form two semi-infinite axial
beams directed along the positive (θ = 0) and negative (θ = π) z-axis. They are determined
by two two-component spinors which we set corresponding to the four-component Dirac
spinor of the wave function of the Dirac equation in a Weyl basis. In this case the spin-
polarization and momentum of the Dirac electron matches with the spin and momentum of
the Kerr spinning particle [13, 22]

Such a relation is simple for the standard orientation of the Kerr–Newman solution and the
standard treatment of the Dirac equation for a free electron. However, in more general cases
(a moving electron, or electron in an external electromagnetic field) the null vectors formed
by the Dirac bispinor components turn out to be independent, and the corresponding selected
null beams take independent orientation. It leads to the deformation of the Kerr twistorial
structure which is determined by some generating function of the Kerr theorem. Thus, to
set the correspondence (1) in a general case, one has to use the Kerr theorem involving the
complex-world-line (CWL) representation of Kerr geometry. The corresponding chain of
relations takes the form

Dirac equation ⇒ wave function ⇒ CWL ⇒ Fq ⇒ Y (x) ⇒ Kerr Geometry

which is valid for a weak and slowly varying electromagnetic field, which is the case compatible
with the validity of one-particle Dirac theory. The relation between the CWL and parameters q
of the Kerr generating functions Fq was investigated in [19, 23], and in this paper we consider
the missing link Dirac equation ⇒ wave function ⇒ CWL which allows one to consider the
Dirac equation as a master equation, controlling the polarization and dynamics of the Kerr
geometry corresponding to the wave function of the considered electron.

One more aspect of our treatment concerns the wave properties of electrons. It was
obtained long ago that the stationary Kerr–Newman solution may only be considered a first
approximation, and some extra electromagnetic and spinor wave excitations on the Kerr
background are necessary to generate the wave properties of the Dirac electron. Because of
that, from the beginning this model was considered a model of ‘microgeon with spin’ [4], in
which the Kerr–Newman solution represents only solution for some averaged fields on the
Kerr background. It was observed [10, 22] that the treatment of the electromagnetic or spinor
wave excitations on the Kerr background leads to the inevitable appearance of extra axial
singular lines resembling the singular strings of the Dirac monopole. Moreover, the wave
excitations of the Kerr circular singularity induce de Broglie periodicity on the axial singular
lines [13, 22]. It stimulated investigation of the wave analogs of the Kerr–Newman solutions,
which is related to generalization of the known Kerr–Schild class of solutions by treatment of
some extra function γ which was set to zero in the general Kerr–Schild formalism. This is a
very hard unsolved problem, and in this paper we concentrate our attention on special exact
singular solutions ‘chirons’ which acquire a wave generalization, being asymptotically exact
for the weak and slowly varying electromagnetic excitations [24].

We keep mainly the Kerr–Schild notations [3] for Kerr geometry and spinor notations of
the book [25]. The following two sections represent a brief description of the structure of Kerr
solution following the papers [11, 13, 19].

3
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Figure 1. The Kerr singular ring and congruence.

2. The real structure of the Kerr geometry

The angular momentum of an electron J = h̄/2 is extremely high with respect to the mass,
and the black hole horizons disappear opening the naked Kerr singular ring. This ring is a
branch line of the space which acquires two-fold topology. It was suggested [4] that the Kerr
singular ring represents a string which may have some excitations generating the spin and
mass of the extended particle-like object—‘microgeon’.

The skeleton of the Kerr geometry is formed by the Kerr principal null congruence which
represents a twisted family of the lightlike rays—twistors. The null vector field kµ(x), which
is tangent to these rays, determines the Kerr–Schild form of metric

gµν = ηµν + 2Hkµkν, (6)

where ηµν is the auxiliary Minkowski metric with coordinates xµ = (t, x, y, z). The vector
potential of the Kerr–Newman solution is aligned with this congruence,

Aµ = er(r2 + a2 cos2 θ)−1kµ, (7)

and the Kerr singular ring represents its caustic.

The Kerr theorem [18, 19, 20, 21, 26] claims that any holomorphic surface in the projective
twistor space CP 3 with coordinates

Zα = (Y, λ1, λ2), λ1 = ζ − Yv, λ2 = u + Y ζ̄ (8)

determines the geodesic and shear-free null congruence in M4. Such congruences lead to
solutions of the Einstein–Maxwell field equations with metric (6) and an em-field in the
form (7). The congruence of the Kerr solution is built of the straight null generators, twistors,
which are (twisting) null geodesic lines (possible trajectories of photons). Therefore, for any
holomorphic function F(Zα), solution Y (xµ) of the equation F(Y, λ1, λ2) = 0 determines
congruence of null lines in M4 by the form

e3 = du + Ȳ dζ + Ydζ̄ − Y Ȳ dv (9)

4
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and the null vector field tangent to congruence is kµdxµ = P −1e3.2 Function Y is related to
projective spinor, Y = φ2/φ1, and null vector field kµ may be represented in spinor form
kµ = φ̄α̇ σ̄ α̇α

µ φα.

3. Complex representation of the Kerr geometry

The complex source of Kerr geometry is obtained as a result of complex shift of the ‘point-like’
source of the Schwarzschild solution in the Kerr–Schild form. There are also the Coulomb
and Newton analogs of the Kerr solution.

Applying the complex shift (x, y, z) → (x, y, z + ia) to the singular source (x0, y0, z0) =
(0, 0, 0) of the Coulomb solution q/r , Appel in 1887(!) obtained the solution φ(x, y, z) =
�e q/r̃, where r̃ =

√
x2 + y2 + (z − ia)2 turns out to be complex. On the real slice (x, y, z),

this solution acquires a singular ring corresponding to r̃ = 0. It has radius a and lies in the
plane z = 0. The solution is conveniently described in the oblate spheroidal coordinate system
r, θ, where

r̃ = r + ia cos θ. (10)

One can see that the space is twofold having the ring-like singularity at r = cos θ = 0 as the
branch line. Therefore, for each real point (t, x, y, z) ∈ M4 we have two points, one of them
lying on the positive sheet, corresponding to r > 0, and the other one lying on the negative
sheet, where r < 0.

It was obtained that the Appel potential corresponds exactly to the electromagnetic field
of the Kerr–Newman solution written in the Kerr–Schild form, [4]. The vector of complex
shift �a = (ax, ay, az) corresponds to the angular momentum of the Kerr solution.

Newman and Lind [17] suggested a description of the Kerr–Newman geometry in the
form of a retarded-time construction, where it is generated by a complex point-like source,
propagating along a complex world line Xµ(τ) in a complexified Minkowski spacetime CM4.
The rigorous substantiation of this representation is possible only in the Kerr–Schild approach
[3] based on the Kerr theorem and the Kerr–Schild form of metric (6) which are related to the
auxiliary CM4 [18, 19, 23].

In the rest frame of the Kerr particle, one can form two null 4-vectors kL = (1, 0, 0, 1) and
kR = (1, 0, 0,−1), and represent the 3-vector of complex shift i�a = i�mXµ as the difference
i�a = ia

2 {kL − kR}. The straight complex world line corresponding to a free particle may be
decomposed to the form

Xµ(τ) = Xµ(0) + τuµ +
ia

2
{kL − kR}, (11)

where the timelike 4-vector of velocity uµ = (1, 0, 0, 0) can also be represented via vectors
kL and kR

uµ = ∂t�eXµ(τ) = 1
2 {kL + kR}. (12)

One can form two complex world lines related to the complex Kerr source,

Xµ
+ (t + ia) = �eXµ(τ) + iak

µ

L, X
µ
−(t − ia) = �eXµ(τ) − iak

µ

R, (13)

which allows us to match the Kerr geometry to the solutions of the Dirac equation.

2 Here kµ and Y are functions of xµ = (t, x, y, z) ∈ M4, and P = P(Y, Ȳ ) is a normalizing factor related to the
boost of the Kerr source.
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Figure 2. The Kerr singular ring and two special twistors.

3.1. Complex Kerr string

The complex world line Xµ(τ) is parametrized by the complex time parameter τ = t + iσ
and represents a world sheet. Therefore, Xµ(t, σ ) is a very specific string extended along
the imaginary time parameter σ . The Kerr–Newman null congruence and corresponding
gravitational and electromagnetic fields are obtained from this string-like source by a retarded-
time construction which is based on the complex null cones, emanated from the worldsheet
of this complex string [9, 13]. In particular, the real twistors of the Kerr congruence represent
a real slice of the null generators of these null cones [9, 19]. The complex retarded time
equation t − τ = r̃ takes the form

τ = t − r + ia cos θ. (14)

The real sections of the complex cones correspond to the real coordinates t, r, θ. It yields the
relation

σ = a cos θ (15)

between the points of worldsheet and angular directions of twistor lines. Since |cos θ | � 1,

we conclude that the string is open and has the end points corresponding to cos θ = ±1 and
to two complex world lines X

µ
+ = Xµ(t + ia) and X

µ
− = Xµ(t − ia). By analogy with the real

strings, where the end points are attached to quarks, one can add the Chan–Paton factors to
the end points X

µ
± of the complex Kerr string and identify them as quarks [11, 13].

The complex cones positioned at these end points have the real slice in the form of two real
twistors corresponding with the above discussed null directions k

µ

L and k
µ

R which determine
momentum and spin-polarization of the Kerr solution. These twistors have the limiting values
of angular direction cos θ = ±1, and form two half-strings of opposite chirality aligned with
the axis of symmetry z, see figure 2.

3.2. Chirons and excitations of the Kerr singular ring

The twistor coordinate Y is also the projective angular coordinate

Y = eiφ tan
θ

2
(16)

6
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covering the celestial sphere Y ∈ CP 1 = S2. The electromagnetic field of the exact stationary
Kerr–Schild solutions [3], is determined by the vector potential which may be represented in
the form

Aµ = �e A(Y )(r + ia cos θ−1kµ,

where A(Y ), is an arbitrary analytical function of Y . In general, A(Y ) may contain the poles
in different angular directions Y of the celestial sphere S2, which causes the appearance of
semi-infinite singular rays—axial strings [22]. The elementary solutions are A(Y ) = eY−n.
The simplest case ψ = e = const. gives the Kerr–Newman solution. The case n = 1 leads
to a singular line along the positive semi-axis z. Due to the factor eiφ in Y, the em-field has
a winding number n = 1 around this axial singularity. Since there is also a pole at singular
ring, ∼(r + ia cos θ)−1, the em-field has a winding of phase along the Kerr ring. The solution
with n = −1 has the opposite chirality and singular line along the negative semi-axis z. These
elementary exact solutions (‘chirons’) have also the wave generalizations A = eY−n eiωτ

acquiring the extra dependence from the complex retarded time τ [22]. The wave chirons are
asymptotically exact in the low-frequency limit [24], and describe the waves propagating along
the Kerr singular ring, as was assumed in the old ‘microgeon’ model [4]. Such waves may also
be considered as em-excitations of the Kerr closed string [11]. The two axial half-strings are not
independent: the boundary conditions of the complex Kerr string demands its orientifolding by
identification of the initiate worldsheet and the worldsheet with reverse parametrization [9, 13].
Orientifolding is accompanied by the reverse of space and antipodal map Ȳ → −1/Y,

which displays an antipodal relation between the singular half-strings and also between the
corresponding chirons. Note that by a Lorentz boost the axial half-strings acquire modulation
by de Broglie periodicity [13, 22].

4. The Dirac equation in the Weyl basis

In the Weyl basis the Dirac spinor has the form � = (
φα

χα̇

)
, and the Dirac equation splits into

σ
µ

αα̇(i∂µ + eAµ)χα̇ = mφα, σ̄ µα̇α(i∂µ + eAµ)φα = mχα̇. (17)

The conjugate spinor has the form

�̄ = (χ+, φ+) = (χ̄α, φ̄α̇). (18)

The Dirac current

Jµ = e(�̄γµ�) = e(χ̄σµχ + φ̄σ̄µφ), (19)

can be represented as a sum of two lightlike components of opposite chirality

J
µ

L = eχ̄σµχ, J
µ

R = eφ̄σ̄ µφ. (20)

The corresponding null vectors

k
µ

L = χ̄σµχ, k
µ

R = φ̄σ̄ µφ, (21)

determine the considered above directions of the lightlike half-strings. The momentum of the
Dirac electron is pµ = m

2

(
k

µ

L + k
µ

R

)
, and the vector of polarization of an electron [25, 27] in

the state with a definite projection of spin on the axis of polarization is nµ = 1
2

(
k

µ

L − k
µ

R

)
. In

particular, in the rest frame and the axial z-symmetry, we have kL = (1, �kL) = (1, 0, 0, 1) and
kR = (1, �kR) = (1, 0, 0,−1), which gives pµ = m(1, 0, 0, 0), and nµ = (0, 0, 0, 1), which
corresponds to the so-called transverse polarization of the electron [27], �n�p = 0.

By the Lorentz boost �v, the spinors χ and φ transform independently, [28]

χ ′ = exp
(
−σv

w

2

)
χ, φ′ = exp

(
−σv

w

2

)
φ, (22)

7
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where σv = (�σ · �v)/|v| and tanh w = v/c. The Dirac spinors form a natural null tetrad. The
null vectors k

µ

L = χ̄σµχ and k
µ

R = φ̄σ̄ µφ, may be completed to the null tetrad by two null
vectors mµ = φσµχ, and m̄µ = (φσµχ)+ which are controlled by the phase of the wave
function. Therefore, the de Broglie wave sets a synchronization of the null tetrad in the
surrounding spacetime, playing the role of an ‘order parameter’.

5. The Dirac equation as a master equation controlling twistorial polarization

Obtaining the relation between the Dirac wave function and Complex World Line (CWL), we
have to set other missing links in our long chain of the relations discussed in the introduction.
First, let us recall the relation F ⇒ Kerr Geometry. The used in [3] generating function
F(Y, λ1, λ2) leading to the Kerr–Newman solution had the form

F ≡ a0 + a1Y + a2Y
2 + (qY + c)λ1 − (pY + q̄)λ2, (23)

where a0, a1, a2 are complex constants which determine spin orientation, the coefficients
c, p, , q, q̄, determine the Killing vector (or the boost) of the solution and the related function

P = −pY Ȳ − q̄Ȳ − qY − c. (24)

Since λ1 = ζ − Yv, λ2 = u + Y ζ̄ , the function F is quadratic in Y and has the general
form F = AY 2 + BY + C, which allows us to find two roots of the equation F(Y ) = 0,

Y± = (−B + �±)/2A, �± = ±(B2 − 4AC)1/2, (25)

and represent function F(Y ) in the form

F = A(Y − Y +)(Y − Y−). (26)

Following [3, 19], we can determine

PZ−1 = −∂F/∂Y = 2AY + B, (27)

which turns out to be a complex radial distance r̃ = r + ia cos θ,

r̃± = −PZ−1 = 2AY± + B = �±. (28)

The two solutions for Y and r reflect the known twofoldedness of the real Kerr geometry
and correspond to two different sheets of the real Kerr spacetime with different congruences.

In the case of arbitrary position, spin orientation and boost, the generating function F
is controlled by the set of parameters q = (a0, a1, a2, c, q, q̄, p) and may be represented as
Fq = AqY

2 +BqY +Cq. The relation of the coefficients A,B,C to the parameters of CWL (11)
was given in [19, 23]:

A = (ζ̄ − ζ̄0)v̇0 − (v − v0)
˙̄ζ 0;

B = (u − u0)v̇0 + (ζ − ζ0)
˙̄ζ 0 − (ζ̄ − ζ̄0)ζ̇0 − (v − v0)u̇0;

C = (ζ − ζ0)u̇0 − (u − u0)ζ̇0,

(29)

were the parameters of CWL are expressed in the null coordinates (4), in accordance with the
correspondence

(u0, v0, ζ0, ζ̄0) ↔ Xµ(0) +
ia

2
{kL − kR}, (u̇0, v̇0, ζ̇0,

˙̄ζ 0) ↔ Ẋµ(τ ) = 1

2
{kL + kR}.

It restores the full chain of relations between the values of the Dirac wave function and
polarization of the Kerr geometry.

The obtained relationship Dirac/theory ⇒ Kerr/geometry may be interpreted in the
frame of some version of one-particle quantum theory. For example, the plane Dirac wave

8
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does not give information on the position of electron, but gives exact information on its
momentum and spin-polarization. The center of corresponding Kerr–Newman geometry may
be localized at any point of spacetime, but the considered model gives a definite orientation of
spin and corresponding deformation of the Kerr congruence caused by momentum (Lorentz
boost). If the wave function is formed by a wave packet and localized in some restricted
region which is much greater than the Compton length, we have a value of the normalized
Dirac bispinor � = (

φα(x)

χα̇(x)

)
, at the pointx ∈ M4 and corresponding density of probability

w(x) = χ̄ (x)χ(x)+φ̄(x)φ(x) for position of the Kerr geometry, and the obtained relationships
say that with the densityw(x) electron is positioned at this point and has at this point a
definite polarization of the Kerr–Newman geometry which is determined by values χ(x) and
φ(x). Therefore, we arrive at some stochastic version of quantum theory containing hidden
parameters, more precisely – a hidden spacetime structure.

The relationship Dirac/theory ⇒ Kerr/geometry is one-sided, since it regards the Dirac
equation as a master equation and does not give anything new for the Dirac theory itself
besides of its interpretation. At the same time it gives some new useful relations to Kerr–
Newman solution, allowing us to determine its behavior in a weak and slowly varying external
electromagnetic field via solutions of the Dirac equation.

On the other hand, the considered twistorial structure of the electron is based on the
local field theory and allows one to conjecture that there is indeed a relation of this model to
multi-particle quantum field theory which gives a more detailed description of the electron.
The author expects that at least some of the mysteries and problems of modern QED may be
understood and cured in this way. In particular, the em-field of the Kerr–Schild solutions Fµν

is to be aligned with the Kerr congruence, obeying the constraint Fµνk
µ = 0. The twistorial

structure of the Kerr–Schild solutions determines the polarization of the em field, providing
a caustic on the Kerr singular ring. Consequently, elementary electromagnetic excitation
aligned with the Kerr background shall lead to the appearance of waves propagating along the
Kerr ring and, simultaneously, to the appearance of the induced singular axial pp-waves [22].
All that has to be also valid for the vacuum fluctuations [24], and the field of virtual photons
is to be concentrated near the Kerr singular ring, forming excitation of this ring which may
be considered a closed string3. Therefore, the model of electron based on the fields aligned
with the Kerr twistorial structure supports the conjecture that the string-like source of the
Dirac–Kerr electron, having the Compton size, should be experimentally observable.

It seems that there is a more simple way to apply Kerr geometry, considering the Dirac
equation on the Kerr background [14]. However, in spite of the separability of the Dirac
equation on the Kerr background, the corresponding exact wave solutions are unknown for the
case of nonzero mass term. There are also some theoretical arguments sowing that the exact
massive solutions on the Kerr background, aligned with the Kerr congruence, don’t exist at
all, because of the twosheetedness of the Kerr spacetime.

It should also be noted that all the wave em-solutions aligned with the Kerr background
demonstrate the appearance of singular beams. Such singular beams also appear inescapably
in the spinor wave solutions [10, 14], which disables the necessary normalization of the wave
functions. All that shows us the serious problems with a straight approach and justifies the
reason for the treatment of the above combined Dirac–Kerr model. Although it is apparently
not a unique possible model and one of the other prospective approaches could be the treatment
of the initially massless Dirac equation with corresponding massless solutions, the Dirac field

3 It was shown that the fields around the Kerr string are similar to the fields around a heterotic string obtained by Sen
as a solution to low-energy string theory [11, 29]. However, it has the peculiarity of the ‘Alice’ string, since it is a
branch line of the space onto ‘negative’ and‘positive’ sheets, forming a gate to the mirror ‘Alice’ world.
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Figure 3. Kerr’s electron dressed by a Higgs field: relativistic disk and two axial half-strings,
carriers of the wave function.

should acquire the mass due to a dynamical effect, similar to the appearance of mass in string
models.

6. Other aspects of the extended Kerr electron

Regularized source. The twosheeted topology of the Kerr geometry caused a long discussion
on the problem of the Kerr source. A series of the papers has been devoted to an alternative
approach avoiding the twosheetedness. Israel [2] suggested truncating the negative sheet
along the disk r = 0, which resulted in a disk-like source of the Compton size with a singular
distribution of matter δ(r). Subsequent investigations showed that such a disk has to be rigidly
rotating and built of exotic superconducting matter. An important correction was given by
López [8], who shifted the surface of the disk to r = re = e2/2m. The resulting source is
the relativistically rotating oblate ellipsoidal shell having Compton radius and the thickness
corresponding to the classical radius of the electron re. The resulting source turns out to be
regularized; however, it contains a singular matter distribution on the shell. López showed
that gravity gives a very essential contribution to the mass. The subsequent steps were related
to the treatment of the source in the form of a relativistically rotating bag filled by a false
vacuum [30, 31]. In such a model the local gravitational field will be extremely small in all
the points of spacetime which turns out to be really Minkowskian everywhere. However, it
was shown in [15] that, in spite of the very small local contribution, gravity possesses an
exclusively strong non-local effect; in fact it provides regularization, determining the point of
phase transition from the external (true) electro-vacuum of the Kerr–Newman solution to the
regular false vacuum inside the bag. It is expected that such smooth superconducting sources
may be formed by Higgs fields in a supersymmetric version of the U(1) × Ũ (1) field model.
An image of the corresponding regularized Kerr source is shown in figure 3.

Twistors and scattering. One of the most problematic and frequently asked questions
concerns the seeming contradiction between the large Compton size of the Kerr electron and
the widespread statement on the point-like structure of the electron obtained in the experiments
on deep inelastic scattering. The explanation suggested in [13] is as follows. The momentum
of a massive particle is represented as a sum of the lightlike parts p

µ

L and p
µ

R. For relativistic
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boosts we have usually either pL � pR or pL  pR , which determines the sign of helicity.
As a result, one of the axial semi-strings turns out to be strongly dominant and another one
represents only a small correction, which allows to use the perturbative twistor-string model
for the scattering [32, 33], which is based on a reduced description in terms of the lightlike
momentums and helicities. So, the relativistic scattering is determined only by one of the axial
half-strings. One can conjecture that the Kerr disk of the Compton size may be observed only
for polarized electrons in the low-energy experiments with a very soft resonance scattering.

One more question is related to the usefulness and/or necessity of the twistor approach.
First of all, twistors are absolutely necessary to determine the exact form of the Kerr geometry
in a general case apart from the case of a standard Kerr–Newman form. Second, a very
important application is related to the above discussed twistor-string theory for scattering
at high energies. Next, there is evidence that twistors may play a principal role for the
space-description of interactions at any energies. It follows from the treatment of the exact
multiparticle Kerr–Schild solutions which were obtained recently, using generating functions
of the Kerr theorem F(Y ), having higher degrees in Y. Forming the function F as a product of
a few one-particle functions in the form of the known blocks Fi(Y ), i.e. F(Y ) ≡ ∏k

i=1 Fi(Y ),

one obtains multiparticle solutions in which interaction between particles occurs via a common
singular twistor line [26].

Finally, it should be noted that the associated Kerr geometry Minkowski spacetime has
indeed a twofold topology, and the usual Fourier transform does not work for the functions
formed by complex shift. Thereby, the tradition for QED transforms to the momentum space
cannot be performed in this case. Meanwhile, at least the wave functions and S-matrix
turns out to be well defined by transform to twistors space [33] which takes in some sense
an intermediate position between the coordinate and momentum space. The corresponding
twistor transform is obtained from coordinate representation by a Radon transform [34] which
represents a generalization of the usual Fourier transform. For the simplest case of a plane
wave function it was explicitly shown in [33], and it seems to be very perspective for the wave
functions on the Kerr background.
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